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On the limit Gibbs states of the spherical model 

J G Brankov and D M Danchev 
Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, 1090 Sofia, PO 
BOX 373, Bulgaria 

Received 23 February 1987 

Abstract. The effect of a class of Hamiltonian perturbations, vanishing in the thermo- 
dynamic limit, on the limit Gibbs states of the spherical and mean spherical models is 
studied. The perturbation term is taken in the form of interaction energy with uniform 
magnetic field of strength hoN-", where h,~iW' and a > O  are parameters, and N is the 
number of particles. For fixed temperatures below the critical temperature, in the absence 
of constant external magnetic fields and at a = 1 we obtain convex sets of different mixed 
Gibbs states parametrised by ha .  A natural one-parameter generalisation of the Kac- 
Thompson transformation kernel which relates the states of the mean spherical model to 
the states of the spherical model is found. When 0 < a < 1 and h,  # 0, or a = 1 and ha = f m ,  
this kernel becomes a S function even below the critical temperature; then the states in 
both ensembles coincide with each other and with one of the two (depending on the sign 
of h,) extreme points. The case of a > 1 is found to lead to the well known results 
corresponding to the absence of perturbation (ha = 0). 

1. Introduction 

This work was inspired by the wish to better understand the discrepancy between the 
statistical properties of the mean spherical and spherical models which occurs below 
the critical temperature in the zero-field case. It was first noticed to take place for 
some average values by Lewis and Wannier (1953), next pointed out for the one-particle 
probability distribution by Lax (1955) and studied in further generality and detail by 
Yan and Wannier (1965) and Kac and Thompson (1977). Yan and Wannier (1965) 
concluded that the discrepancy was not between two different forms of statistics, e.g. 
between microcanonical and canonical ensembles, but rather within one form of 
statistics, e.g., the one-particle distribution in the mean spherical model drastically 
depends on the order of the zero-field limit and the thermodynamic limit. We believe 
this fact to indicate that the zero-field low-temperature state of the system is unstable 
and essentially depends on the details of the way the thermodynamic limit is taken. 

Here we follow, as well as the authors cited above, the approach to statistical 
mechanics of infinite systems based on the study of the thermodynamic limit of finite 
systems described by appropriate Gibbs ensembles. Extending the idea of a recent 
work by Brankov er a1 (1986), we study the effect of a class of Hamiltonian perturbations 
on the limit Gibbs states of both the spherical and mean spherical models. The 
perturbation term is chosen in the form of interaction energy with uniform magnetic 
field of strength hoN-", where hoe R' and a > 0 are parameters, and N is the number 
of particles in the system. Thus we start with the Hamiltonian 

0305-4470/87/144901+ 13$02.50 @ 1987 IOP Publishing Ltd 

(1.1) 

490 1 



4902 J G Brankov and D M Danchev 

where ai E R’ is the dynamical variable associated with the site i = 1 , .  . . , N of a 
d-dimensional regular lattice embedded in a torus (i.e. with periodic boundary condi- 
tions). The coupling Tv is assumed isotropic and translation invariant. Since the case 
of a fixed non-zero external magnetic field is trivial from the viewpoint of our investiga- 
tion, we confine ourselves to the case when the perturbation is included in the zero-field 
Hamiltonian. 

As has been generally accepted after the work of Lewis and Wannier (1952), we 
consider the spherical and mean spherical models as one statistical mechanical system, 
described by the Hamiltonian ( l . l ) ,  in two different Gibbs ensembles. The spherical 
model of Berlin and Kac (1952) corresponds to the system ( 1 . 1 )  in an ensemble 
microcanonical with respect to the observable Xi af, i.e. we fix 

For brevity we will refer to the model obeying condition (1.2) as the spherical model 
of (normalised) radius ,$‘I2. 

The corresponding grand canonical ensemble leads to the Gaussian model with 
partition function given by 

Q%P, s I ho, a) = [ . . . [ d a l , .  . . , daN eXp(-Sc af)  eXp(-P%N(W1ho, a)). (1 .3)  

The condition for thermodynamic equivalence of the two ensembles leads to the 
following equation for the activity e-’ in the Gaussian model: 

a 
as 

--In Qg(P, s 1 ho, a) = N t .  

The Gaussian model with activity obeying equation (1.4) is in fact the mean spherical 
model (of mean normalised radius ,$‘I2) introduced by Lewis and Wannier (1952). 

By repeating the derivation of Yan and Wannier (1965) in the slightly more general 
case of spherical models of normalised radius ,$‘I2 for the zero-field one-particle 
probability distribution 

p l (x  I p, 5) dx = N lim +a2 Prob{x s a1 < x + d x  I@, 5) 

Pt;’(X I P, 5) = (2r5)  exp(-x2/25) (1.6) 

(1.5) 

where the probability is calculated in the appropriate ensemble at inverse temperature 
p and field ho = 0, one obtains, in the mean spherical model 

and in the spherical model 

P < P c 1 5  

Under the same conditions, the Kac-Thompson transformation kernel (see Kac 
and Thompson 1977) 
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where the probability is calculated in a sequence of mean spherical models of fixed 
mean radius &’/* = 1 and increasing number of particles N, takes the form 

P < P C  

P > P c ,  5 < P c / P .  
(1.9) 

Kac and Thompson (1977) have shown that for a certain class of observables 
(functions f (u)  on the phase space of finite system) the average values in the limit 
Gibbs states corresponding to the two ensembles are related by the equation 

( f ( o ) ) ~ P ,  1) = JOm u ( ~ ) > ’ ( P ,  ~ ) K ( ~ I P )  d5  (1.10) 

where ( )“”’(P, 5) is defined as the thermodynamic limit of the corresponding finite 
system ensemble average. 

We will use kernel (1.8) rather than average values to relate probabilities of events 
in the limit Gibbs states. The argument is based on the consideration of finite system 
ensembles, for which the probability of some event in the grand canonical ensemble 
can be expressed as a product of the conditional probability of that event in the 
microcanonical ensemble at a given radius (condition (1.2)) and the probability of 
finding the given radius, integrated over all values of the radius. Taking next the 
thermodynamic limit N+m in the sense of weak convergence of distributions of 
finite-dimensional random variables T ( ~ )  = { v \ ~ ) ,  . . . ,T!,”} on the phase space of 
N-particle systems to limit distributions ascribed to some limit random variable 
7 = { vl, . . . , T,}, assuming the existence and interchangeability of the limits involved 
as well as the existence of limit probability densities: 

Pv (XI 9 . . . 9 xfl I P, 5 )  
= lim Prob{x1S.rl‘,”<xl+dxl,.. . , ~ , d ~ ( , ~ ) < x , + d x , I P , 5 }  (1.11) 

N - m  

we get a more general form of relation (1.10): 

P ~ ( X I  3 . ., X, I P, 1) = . . , X, I PI 5 ) K  ( 5  I P )  dt .  (1.12) lom 
The formal way of obtaining (1.12) is to set in (1.10) for any fixed integer n :  

(1.13) 

Then the average values in (1.10) are meaningful for systems of N 2 n particles and 
are just the characteristic functions of the n-dimensional random variable q ( N )  with 
components viN) = ui, i = 1,.  . . , n. The convergence of characteristic functions in the 
limit N + cc is equivalent to weak convergence of distributions. Equation (1.12) holds 
true when the transformation from the characteristic function to the density of the 
distribution function can be performed under the integral over 5. 

Relation (1.12) can easily be checked for the one-particle densities (1.6) and (1.7) 
by using kernel (1.9). In this case it follows formally from equation (1.10) by inserting 
f ( u ) = 6 ( a , - x ) .  
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Relation (1.12) can be inverted in some cases and this fact makes it a useful tool 
for the calculation of probability distributions in the spherical model based on calcula- 
tions in the grand canonical (mean spherical) ensemble only. 

In this paper we solve the following problems. First we study the effect of the 
perturbation term in the Hamiltonian (1.1) on the probabilistic kernel (1.8). Working 
entirely in the grand canonical ensemble, we find in § 2 the modified form of this 
kernel. In 00 3 and 4 we study two simple but physically important distributions-the 
single-spin distribution density p , ( x )  and the long-range block spin (using the ter- 
minology of Schultz er a1 (1964)) density p L ( x ) ,  respectively. We find that the perturba- 
tion may affect the limit Gibbs states of the mean spherical model-an indication of 
this is the change in the shape of p 7 ' ( x )  and p ; l s ( x ) .  By inverting equation (1.12) we 
find the modified densities p l ( x )  and p l ( x )  in the microcanonical ensemble; they reflect 
the changes in the limit Gibbs states of the spherical model. These results are generalised 
for arbitrary finite-dimensional projections of the limit Gibbs measures in 0 5 .  Under 
some technical conditions, the infinite-dimensional characteristic function of the 
stochastic fields is obtained too. Section 6 contains a short discussion of the results. 

2. Calculation of the transformation kernel 

The characteristic function of the random variable N - '  Z i  vf in the mean spherical 
model with Hamiltonian (1.1) and normalised radius ["2 = 1 is (cf Kac and Thompson 
1977) 

=Qg(P ,  S N - i h N - ' l h O ,  a) /Q%(P,  SNlhO,  a) (2.1) 
where sN = s N ( P ;  ho, a) is the solution of equation (1.4) for [ = 1. The computation 
of Qg(/3,  s I ha,  a) can be easily performed by making use of Fourier transformation 
which diagonalises the quadratic form in the Hamiltonian. Introducing the Fourier 
coefficients f ( q )  of the coupling Tj ,  where q takes values in the first Brillouin zone 
of the reciprocal lattice (see, e.g., Joyce 1972), one obtains explicitly 

Hence, setting z = 2sN/Pf(0) ,  we find from (2.1): 

Equation (1.4) at [ = 1 can be written in the form 

where 
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For a hypercubic lattice of N = N,d sites and volume V = Ld, where L = Nos, a being 
the lattice spacing, under periodic boundary conditions one has 

4, =2.np,/L pa = 0, + l ,  *2,. . . (mod No) a = 1,.  . ., d. (2.6) 

Assuming in addition nearest-neighbour interactions only, the explicit form of f( q )  is 

Now, for d 2 3 ,  by using the method of Fisher and Privman (1986) one can easily 
obtain an estimate of the sum (2.5) uniform in z 3 1: 

1 (2.8) ( d  -2 ) /d  
&,N ( 2 )  = Rd ( z )  + o( N -  

where 

From (2.4) and (2.8) it follows that, for p < p c =  Rd(l ) / f (0) ,  the solution z = 
z N ( p ;  ho, a )  of equation (2.4) converges in the limit N + w  to a value z ( p ) >  1 which 
is independent of the perturbation, provided a > 0. Therefore, passing to the limit 
N+co in (2.3) and taking into account that 

2ih 2ih 
lim x l n ( l -  
N-02 N p f ( o ) ( z N  - f(q)/ f(o))) P T ( 0 )  

= - - & ( Z ( p ) )  = -2iA 

(2.10) 

one obtains 

N-02 lim p N ( A  I p ;  ho, a) = eih P < P C .  (2.11) 

Then the transformation from characteristic function to probability density leads to 
the known result 

m I P ;  h o , a ) = 6 ( 5 - 1 )  P < P C .  (2.12) 

At p > pc there are three different cases since the solution of equation (2.4) converges 
to z = 1 as N + CO but the rate of convergence depends on the interplay of the second 
and third terms on the left-hand side of (2.4). 

(i)  If a < 1 the leading asymptotic form of the solution is 

z N ( p ;  h O i  a) = + l h O l [  f ( o ) N "  ( -pc /p  O <  a < 1. (2.13) 

By inserting this in expression (2.3) and taking the limit N +  00 one obtains 

lim p N ( h  I p ;  ho, a )  = eih p > p c ,  o <  a < 1. (2.14) 
N-CS 

That is, (2.12) holds true even for p > p c ,  provided 0 < a < 1. 

same order. The leading asymptotic form of the solution is 
( i i )  If a = 1 ,  the second and third terms on the left-hand side of (2.4) are of the 

z N ( P ;  ho, a) = 1 +[NPf(O)a(p,  ~ 1 - l  (2.15) 

where 

a ( @ ,  h 0 ) = ~ p - 2 h , 2 { [ 1 + 4 ( 1 - ~ c / ~ ) ~  2 2 1 / 2 -  1). (2.16) 
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(2.17) 

Hence one obtains a non-trivial generalisation of the Kac-Thompson kernel (compare 
with (1.9)): 

K(51P; ho, 1) = f [ 2 d 5 - P c / P ) 4 P ,  h o ) P 2  

for t> PJP,  P ’ P c  and 

W P ;  ho, 1) = o  5 < P C / P  P ’ P C .  (2.19) 

(iii) If a > 1 the third term on the left-hand side of equation (2.4) is negligibly 
small in comparison with the second one. The leading asymptotic form of the solution 
is 

zN(p; h0, a)’ ~ + [ N P ~ ( O ) ( ~ - P C / P ) ] - ’ .  (2.20) 

By inserting (2.20) into (2.3) and passing to the limit N + OL) one obtains the result of 
Kac and Thompson (1977); 

lim ~ N ( A  IP;  ho, a )  = [1-2iA(1 exp(iAPC/P). (2.21) 
N-m 

This characteristic function corresponds to the probability density (1.9) for P > P c .  
We may remark here that cases (i)  and (iii) correspond to the limits lhol+m and 

ho+ 0 of case (ii). Expression (2.18) interpolates continuously between the S function 
and the Kac-Thompson kernel (1.9). Therefore without loss of generality in the 
following two sections we will confine ourselves to the case a = 1. 

3. Single-spin probability density 

Starting from the formal expression 

P;(X IP, 6 ;  ho) = lim 
N-m 
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Taking into account (3.2) one may write 

PY"x(PclP)'/21P, 1; ho(PcIP) '12)  

(3.3) 
ho 

) d t  
X 

( t  + 1)'12 

where the substitution 5 = ( P C / P ) (  t + 1) has been used. Next we set 

Pc[2Pa(P, hO(Pc"l-' = s Pcho = P. (3.4) 

p = pc(4s2+2s+p2)(4s2)- '  ho = p / P c  * (3.5) 

Solving the above equations for P and ho one finds 

After expressing P and ho in terms of s and p with the use of equations (3.5), denoting 
the left-hand side of (3.3) as a function of the new variables by i y ( x  I s, p )  and making 
use of the explicit form (2.18) of the kernel K ,  expression (3.3) simplifies to 

(3.6) 

The Laplace transformation in equation (3.6) can be inverted to give 

A straightforward calculation of the single-spin probability density in the mean 
spherical model with perturbation parameter a = 1 leads to the result 

As expected, in the limit ho+ 0 this reduces to the known zero-field probability density 

1 
P"P, 1; 0) =(2rr)li2exp(-x2/2). (3.9) 

In the limit ho+ *a expression (3.8) recovers the known result for the case when the 
zero-field limit is taken after the thermodynamic limit: 
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From (3.8) with the use of (3.5) we find 

(4~ ’+21+”~ ’ ’  exp( - s ( x - ~ / ~ s ) ’  
2s+1 i;””xIs, I L )  = 2.rr(4s2+2s) (3.11) 

which, after insertion in (3.7), carrying out the integration and transforming back to 
the initial arguments, gives the final result 

P;(XIP, 1; ho)= Y ( P ,  ho)p;+(xIP, 1)+[1 - Y ( &  ho)lp;-(xJP, 1) (3.12) 

where 

(3.13) 

r(P, h ~ )  = (2 cosh[Ph0(1 -PclP)’/’1}-’ exp[Pho(l - P c l P ) ’ / ’ 1 .  (3.14) 

Obviously, all the known results for the single-spin probability density in the spherical 
model follow from (3.12)-(3.14) in the limit cases h,+O or ho+ fco. 

4. Long-range block spin probability density 

Here we study the probability distribution of the random variable N - ’  Z a, in the 
thermodynamic limit under the action of perturbation with parameter (Y = 1. 

In a manner analogous to the one employed in § 3, we start from the definition of 
the probability density 

J . . . J d a ,  , . . . , da, 6(  6 - N - ’  Z, a f ) S (  N - ’  Z, a, - x )  exp[ -PX( v 1 ha ,  l ) ]  
J . .  . J d s l , .  . . , d a N 6 ( 5 - N - ’ Z , a f )  exp[-PX(vIho, l ) ]  X (4.1) 

and find the relation 

P;(x I P, 5; ha) = 5-’/2P;(5-”2x l5P, 1; 5-”’ho).  (4.2) 

Then, repeating the steps described in equations (3.3)-(3.7), we end up with an equation 
completely analogous to (3.7), with p ;  and i Y s  replaced by p ;  and $rs, respectively. 

By direct evaluation in the mean spherical model with perturbation parameter 
(Y = 1, we find 

Hence 

( 4s2+ 2s + p’ )  ‘I2 
exp[-s(x - p./2s)’] 

4 77s 
p ’ n  I s, p )  = (4.4) 

which after insertion in the analogue of equation (3.7), carrying out the integration 
and restoring the original variables, gives the result 

PL(XlP, 1; h a ) =  Y ( P ,  h o ) ~ ( x - ( 1 - P , I P ) ” 2 ) + [ 1 - Y ( P ,  ~ o ) 1 ~ ( x + ( ~ - p c l P ) ” 2 )  (4.5) 

where y ( p ,  h,) has been defined in (3.14). 
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From (4.5) it follows that the law of large numbers is not valid in the limit Gibbs 
state of the spherical model, obtained under the action of perturbation with a 3 1 and 
ho finite (we remind the reader that the case of a > 1, ho finite leads to the same result 
as a = 1 and h, = 0, which in turn is equivalent to the absence of any perturbation). 
An arbitrary mixture of the two pure phases characterised by the single-spin probability 
densities (3.13) can be obtained by means of perturbation with a = 1 and an adequately 
chosen finite value of ho. The pure phases, for which the law of large numbers is valid 
(see, e.g., Ellis and Newman 1978) are reached in the limits ho+ *a if a = 1, or, 
equivalently, under a perturbation with 0 < a < 1 and ho # 0. The general structure of 
the limit Gibbs states will be obtained in the next section. 

5. Characteristic function of the Gibbs field 

For any fixed bounded region A of the lattice Z d  we consider a sequence of d-  
dimensional hypercubic boxes B N ,  B N  c hd, equipped with periodic boundary condi- 
tions and such that (i)  if N > N'  then BN 2 B N ,  and (ii) there is some integer N ,  such 
that BN 3 A for all N >  N, .  By / B N /  = N we denote the number of sites in B N .  We 
assume N = N,d, where No is an odd integer. 

Define the characteristic function 

where the average value is calculated for a mean spherical model with average 
normalised radius 51'2 and Hamiltonian (1.1) for a system in the box BN.  By employing 
Fourier transformation for diagonalisation of the quadratic form in the Hamiltonian 
and performing afterwards the integrations in the explicit form of (5.1), one easily 
obtains 

(P%({fi)lP, 5; ho, a )  

(5.2) 

where 

and z N  = z N ( p ;  ho, a )  is the solution of equation (2.4). 

function (5.2) at fixed A: 
We are interested in the thermodynamic limit BNTZd ( N  -$ CO) of the characteristic 

(5.4) (PX'({~,}JP, 1; ho, a)=;_" c~?,;V({t,)lP, 1; ho, a ) .  
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where 

is the pair correlation function. 
For p > pc we consider separately the same three cases as in $ 2. 
(i)  If a < 1 the parameter zN  in (5.2) and (5.3) has to be taken from equation 

(2.13). In the limit N+co we obtain 

CpXf,}IP, 1; ho, a )  

=exp(-$ c A(i- j Ip) t , t ,+isgn(h0)( l -p , /P)”* f,) (5.7) 
IJEA J E A  

where the correlation function has the form (5.6) with z (p )  = 1. 
(ii) If a = 1, the parameter zN is given by equation (2.15) and now we obtain 

CpY(It,)IP, 1; ho, 1)  

= e v (  -i c [ A ( ~ - J I P ) + ~ ( P ,  ho)lt,t,+iph0a(p, ho) c 5 )  (5.8) 
I . J E A  J E A  

with z ( p )  = 1 in the function (5.6). The pair correlation function is 

( ~ , ~ , ) m s - ( ~ , ) m s ( ~ , ) m s =  A ( i - j [ p ) +  a(p ,  ho). (5.9) 

(iii) If a > 1 we take zN from (2.20) and the result is 

s0Ts({t,)IP, 1; ho,a)=exp(- i  l j c  C 4 [A ( i -J lP )+ (1 -P , /p ) l r . t , )  (5.10) 

We note that the cases a < 1 and a > 1 again correspond to the limits h a +  *CO and 

In order to obtain the characteristic function in the spherical model, we first establish 

with z(P) = 1 in the definition (5.6) of A ( i - J l p ) .  

ha +. 0, respectively, of the case a = 1. 

the relation 

Cpi({t,)lP, 5; hot a)=Cpx51/2f,)15P, 1; 5-”*hor a )  (5.11) 

which follows in the limit N + a3 from the definition of the above functions for any 
finite region BN c Hd, N 2 N , .  Next we invert the relation 

by following the same reasoning as in $0 3 and 4. 
Since in the cases p < p C  or p > p C  and a < l ,  ho#O, the kernel K ( ( l v ; h o , a )  is 

S ( 5  - 1) (see 0 2) ,  then the characteristic functions of the spherieal model and the mean 
spherical model coincide in the form: 

(5.13) 
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In the case (Y = 1 we start with the integral relation between cpTs and vi ,  make use 
of (5.11) and then make the substitution 6 = ( P c / P ) ( t  + 1). The result is 

(5.14) 

The important point now is that, as follows from ( 5 . 8 ) ,  

where the temperature dependence is contained, apart from the explicit factor p, only 
in the function a"@, h,) = a@, h o ( P c / p ) " 2 ) .  Therefore, we may use the substitution 
(3.5) in order to simplify equation (5.14), with the kernel given by (2.18), to the form 

Here 

(5.16) 

(5.17) 

Finally, inverting the Laplace transformation in (5.16) and restoring the original 
variables, we obtain 

where 

and y ( P ,  h,) has been defined in (3.14). 
Now one may consider the limit ATZd under the condition of convergence of the 

sums in (5.19). In the particular case of ho = 0 one has y ( P ,  0) = f and the results of 
Molchanov and Sudarev (1975) for P > Pc follow from (5.18) and (5.19), and for P < pc 
from (5.5) and (5.13). 
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6. Conclusions 

From the results obtained in this paper one can make the following main conclusions 
and conjectures. 

(i) Below the critical temperature there are just two pure translation-invariant 
Gibbs states Q'* (5.19) for the spherical model. The mixed Gibbs states are convex 
linear combinations of the two extreme points: 

q S =  yQs++( l -y)Qs-  0 s  y s  1 .  (6.1) 

(ii) Below the critical temperature the mixed Gibbs states of the mean spherical 
model are of the form 

where dv(5) is a probability measure on the interval [ P C / p ,  CO), (~"(5) are the pure 
Gibbs states of the spherical model of normalised radius and 0 s  y ( 5 )  1 .  The 
measure which describes the mixed states appearing under the action of vanishing 
uniform perturbation with parameters Q and ho is 

(6.3) 

where the explicit expressions for the probability density K ( 5 1 P ;  ho ,  a )  have been 
obtained in 8 2. 

(iii) In the co-existence region, the pure Gibbs phases of both models can be 
singled out by the vanishing in the thermodynamic limit perturbation of the Hamiltonian 
w i t h O < a < l .  

(iv) As generally expected, vanishing of the pair correlation function (gp]) - 
(u,)(u,) in the limit ) i  - j /  =CC is equivalent to pureness of the Gibbs state. 

(v) Statistical inequivalence of the grand canonical and microcanonical Gibbs 
ensembles exists only in mixed states; on the set of pure states the Gibbs ensembles 
are statistically equivalent. 

As far as generalisations of these results are concerned, we may note the following. 
In the case of ferromagnetic O( n )  systems in d > 2 dimensions, the finite-size scaling 

analysis of Fisher and Privman (1985) predicts that the leading order behaviour of the 
magnetisation below the critical temperature T, is 

(6.4) 

Here H is the external magnetic field, L,, j = 1 , .  . . , d, are the lengths of the edges of 
the block sample, so that its volume is V =  L 1 , .  . . , Ld, mo( T )  = ( 1  - p J P ) ' / 2  is the 
spontaneous magnetisation, I,(y) are the Bessel functions of imaginary argument and 
yv = pm0HV is the natural dimensionless scaling combination. Hence one may conjec- 
ture that in the case of O( n )  models exhibiting first-order phase transition, non-trivial 
mixing of the pure states will take place for y, = 0(1), i.e. for Q = 1 in our notation. 
This has been shown rigorously in the case of the mean spherical model by Fisher and 
Privman (1986). Naturally, the scaling form of the magnetisation found in the latter 
work (their equations (3.5)-( 3.7)) coincides with the magnetisation per spin: 

= Phoa(P, ho) = m o ( n  YO(YV) Yo(y) =2y/ [ l+(1+4y2) ' /2]  (6.5) 

which folllows from our expressions (4.3) and 2.16) for the mean spherical model, but 
does not coincide with the corresponding expression for the spherical model of Berlin 

d 4 5 l P ;  ho, Q) '  m I P ;  ho, a )  d 5  

m ( H ,  T ;  L,) = mo( ~ ) ~ ~ l / * ~ ~ ( Y v ) / ~ ~ , / * ~ ~ - l ( Y v ) .  
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and Kac (1952): 

m = mo( T)Py(P,  ho)  - 11 = m d  77 tanh yV (6.6) 

which follows from our result (4.5), although the qualitative similarity is apparent. 
For the sake of completeness and independence of the results we have considered the 
cases of a < 1 and a > 1 too. The main point here is the proof that not just the 
magnetisation but the whole probability distribution coincides in the thermodynamic 
limit with that of the pure phase if a < 1. 

The rigourous investigation of O( n )  niean-field model carried out by Angelescu 
and Zagrebnov (1985) has confirmed the expectation than its pure limit Gibbs states 
correspond to points of a sphere in R" with radius equal to the spontaneous magnetisa- 
tion (below the critical temperature). In the particular case of vanishing uniform 
external field it was found that non-trivial mixing of the pure states takes place again 
for a = 1. Of course, the structure of the set of limit Gibbs states and the character 
of mixing are different from those of the spherical model. 
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